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Abstract. Latticenonlinear rmodels, wheretheStiefelmanifo1d O(n) lO(n  - p )  isattached 
toeachlatticesiteareintroducedto analyse phasetransitionsinfrustrated antiferromagnets, 
with non-collinear spin orderings. A Monte Carlo study of these models in three dimensions 
indicates either Erst-order transitions or second-order ones corresponding to new univer- 
sality classes. There is evidence for a defect mediated transition in some two-dimensional 
models. None oftheresultscan be reproducedby RG techniques ( 2 f e  and4-e expansions). 

1. Introduction 

In a phase transition, the nature of the order parameter space, seems to'be the crucial 
feature determining the universal properties of the systems considered, in the critical 
region. It appears, therefore, natural to describe these properties by considering the 
simplest model, which retains these symmetries. A general rule for constructing such 
models is the following.~If at high temperature, the symmetry group of the system is 
G, and at low temperature it is H, theti the order parameter space is a manifold G/H. 
One can then define a lattice model, where to each lattice site is attached an element 
of this manifold. An interaction between neighbouring sites is then introduced, which 
favours the tendency of these sites to be in the same state. We have studied a specific 
class of such models, where the high temperature group is O(n)  and the low temperature 
group is O(n - p ) .  The order parameter space in this case is what is called in mathematics 
the Stiefel manifold O(n) /O(n-p ) .  It can be simply described as a set of p 
orthogonal unit vectors U, (0  = 1 .-. . p )  in ,a n dimensional space. The corresponding 
Hamiltonian is then defined by 

P 
H = -  C 1 U,(X).U,(Y) (1) 

( S Y )  ==I  

where the points x, and y are nearest neighbours on a cubic lattice, and the constraint 
aa(x )u , (x )=S ,p  is satisfied at each site. When p = l ,  we recover the familiar n 
component Heisenberg model. When p = 2  and n = 3  the manifold is SO(3) and the 
model should be in the same universality class as certain helical magnets and triangular 
antiferromagnets, characterized by non-collinear spin orderings, like VCl, and Ho, Dy 
for example [l]. We call models described by H, Stiefel models. We have undertaken 

D Work supported partly by the Fonds National Suisse de la Recherche Scientifique. 
/I Present address: Department of Physics, Haward University, Cambridge,.MA02138, USA. 

0305-4470/93/l33121+ 09$07.50 6 1993 IOP Publishing Ltd 3121 



3122 

a Monte Carlo study of these models in three dimensions and found that they have 
either a first-order transition or a continuous phase transition, belonging to new 
universality class, which in the case ( p  = 2, n = 3) appears to be the same as the one 
found by Kawamura [2] for certain Heisenberg antiferromagnets. We have also studied 
these models by means of renormalization group techniques (2 + E  and 4 - E dimensions 
expansions). None of the results of the numerical investigation could be reproduced 
by RG techniques. 

An important feature of some of these models is that they possess topologically 
stable defects: magnetic disclination lines. We find indeed that in three dimensions, 
the phase transition is associated to a condensation of defects. We have also seen that 
these defects play an important role in two dimensions, and found good evidence for 
a defect mediated phase transition, which shows some similarity with the familiar BKT 
transition, in the X- Y model. A similar transition was detected in a numerical study 
of the classical Heisenberg antiferromagnet on the triangular lattice [3]. 

On the analytical side, the following results have been found. In the mean field 
approximation, where the order parameters (U,) are introduced, the model shows a 
continuous phase transition, with the classical values of the critical exponents when 
p < n. In order to describe the fluctuations, a Ginsburg-Landau type of Hamiltonian 
is introduced with an interaction given by the potential 

H Kunz and G Zumbach 

V(v)=Ai C ( ~ . % ) ~ + A z x  ? ~ ~ ~ + A g C [ d l ~  (2) 
=@ 4 n 

with A, # 0 and AZ # 0, the q m ( x )  being p vectors in R". There is one stable fixed point 
A ~ # O h ~ # O A ~ = O , i f  n a n , ( p ) ,  when p a 2  [4,5]. Whenp-2forexample n,=21.8. 
A traditional interpretation of these results is that for n s n , ,  the transition may be 
first order. The second tool at our disposal is an expansion in 2 + ~  dimensions, 
describing spin wave interactions in the model. Here, however, the situation is much 
more complicated than in the usual Heisenberg model, where only the temperature is 
changed in a length rescaling. In the case p = 2, four coupling constants are needed. 
This means that if we start with the Hamiltonian, in the continuum limit 

the renormalization will lead us to a more general Hamiltonian 

where 

B,p = Bpu. (4) 
The bracketed expression has a geometric interpretation; it is the most general O ( n )  
invariant metric on the manifold. The renormalization group gives a flow in the 
parameter space {E, c} in terms of  the curvature tensor associated to this metric [6]. 
In our case, to first order in E, the equation read 

3 B fi = E B + ~  [ (3 - n -;) 1+- (cz+2c tr B )  
2T 2f det B 

1 f= Ef -- 
2.n ( 5 )  
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where 

f = c + t ~ ~ B .  (6) 
These equations have a fixed point E” = b l  and y, from which one deduces the 
exponent U for the correlation length Y = 1 / ~ ,  the same as for the Heisenberg model. 
The exponent 7 has also been computed. One finds 

When n =3,  one finds that these exponents are those of a 4-component Heisenberg 
model (7  being the abnormal dimension of an operator of angular momentum I = 1,  
in the Heisenberg case). These results are confirmed to second order in E. An O(4) 
symmetry has been dynamically generated. In this case, we recover the results of 
Azaria, Delamotte and Jolicoeur 171, which were the first to analyse nonlinear U models 
of this type. There is a simple geometric way to understand these results, which points 
to their limitations. The manifold SO(3) is isomorphic to the manifold @, the sphere 
S3 with opposite points identified. The 2+ E expansions probes only the local structure 
of these manifolds described by their curvature and cannot distinguish the Stiefel 
model V3> from the Heisenberg model S3, and this is why all these models have the 
same’critical exponents in this 2+ E expansion. Globally however these manifolds are 
quite different and physically this difference is revealed by the existence of defects in 
the Stiefel model, absent in the 4-component Heisenberg model. 

In fact the isomorphism betweewSO(3) and RP’ can be used to construct a new 
representation of the Stiefel model V2,’. To each rotation g, E S0(3), characterized by 
an angle 0, and a unit vector n,, we can associate a unit vector R, in R4, given by 

In this representation, the Hamiltonian of the Stiefel model V3,j becomes 

where J is a 4 x 4  matrix given by J = lQuy. In this representation, the chiral SO(3) 
model described by the Hamiltonian 

can be seen to be equivalent to the RP3 model [13] since its Hamiltonian becomes 

Although the 2+ E expansion predicts the same critical behaviour for these two models, 
as well as the chiral O(3)  model, we find numerically a continuous transition for the 
Stiefel model V3,’ but a first order transition for the two others. 

2. The Monte Carlo simulations 

The algorithm 

We are using two recently available methods for the .Monte Carlo simulations. First, 
a multi-histogram method due to Ferrenberg and Swendsen [8 ]  is employed in order. 
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to compute the various observables in function of the temperature. Then, we use a 
cluster update due to Wolff [9] for the Heisenberg model, biased according to [lo] in 
order to avoid the formation of too large clusters in the low temperature phase. In 
this paper, we will only discuss problems specific to the Stiefel model. Let us consider 
a general translation invariant Hamiltonian given as a sum over the links of the lattice 

-PH=- C h(y(x),rpCv)) (12) 

H Kunz and C Zumbach 

(X,JC 

in which the 'energy' function is symmetric h(y ,  $) = h(+, y) .  For the Stiefel model, 
the energy is h(y ,  $) = p  Tr y'$. In order to build a cluster algorithm, we define the 
linear operator R on 'p given by R = 1. -2P and P is a projector chosen at random. 
The operator R is in O ( n )  and corresponds to a reflection through the hyperplane 
perpendicular to the P subspace. Then, the probability to activate a link ( x , y )  is 
given by 

P ( ( x , Y ) )  = 1 -expIminEO, h ( R d x ) ,  d y ) ) - h ( y ( x ) ,  d ~ ) l } .  (13) 

The only degree of freedom left in the algorithm is the dimension, dim(P), of the P 
subspace. For the Heisenberg model, as done by Wolff [9], it seems natural to take 
dim(P) = 1. For the Stiefel model Vn,2, we tried dim(P) = 1 and dim(P) =2 .  We found 
that, the algorithm with dim(P) = 1 gave a much lower autocorrelation time. Neverthe- 
less, even in the better case dim(P) = 1, the autocorrelation time grows badly around 
the critical temperature, and it seems that this algorithm does not get rid of the critical 
slowing down. As discussed in [ll, 121, this seems related to the non-ferromagnetic 
interaction of the underlying Ising model. 

All simulations were done on a cubic lattice of side L, with periodic boundary 
conditions. The program was written for a first exploration of these models, but was 
not optimized for a high precision study. The errors on the curves presented here 
(estimated either by computing the number of independant measurements for a given 
temperature or by adding new simulations in the set of histograms) are of a few percent 
or better. An estimation of the errors on the critical exponents is much more tricky. 
A subjective estimate based on the finite size scaling would give typically 5% on 
U or y. 

Definition of the observables 

Quantities of interest are the energy per link h=(H)/dL' ,  the specific heat CO= 
a(H)/aT, and the susceptibility x = (Z, u,(O) . u, (x) ) .  The correlation length .$ is 
defined as follows. We compute the Fourier transform C ( k )  of the two point correlation 
function 

G ( k )  = C e'"(-,@). -&I) (14) 
mx 

for k 2 = ( 2 ~ / L ) 2 .  For small k, we expect G ( k ) - 1 = X - 1 ( l + k Z ~ 2 )  and take this as a 
definition of 5; 

SO(3) = RP3 models is the definition of defects on 
a lattice. We already solved this problem in the general RP"-' case [13]. Forthe SO(3) 

A problem specific to the V3,2 

case, we simply use the mapping given by equation ( S ) ,  to reduce the problem to the 
RP3 case. ~~ 
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Let us consider the loop 8P around an elementary plaquette of the lattice. We 
define the density of defects by 

In the same way, we can introduce a topological order parameter fi by 

where 2 is a loop of length L across the sample. 
Other topological defects come from the fact that tbe manifold Vn," = O ( n )  is 

composed of two sheets. This is expressed byno( &) = Z,. The associated Z, symmetry 
breaking is measured by the quantuty 

. 

In order to fit the critical exponents around the transition, we use the finite scaling 
hypothesis (FSS), in the form 

5 ( r ,  L)/L=f(L/Sm) 
X ( T ,  L)/L+ = f  '(L/&,) (18) 

where Cm denotes the inEnite volume correlation length. We proceed in a similar way 
for the other observables, with the corresponding critical exponents. In the parameters 
fitting, we also impose that when the~correlation length is sufficiently small compared 
to the size of the system, the observables must tend to the infinite volume limit, that is 

(19) 
5(T0- ,5m for 5 f L i i  
X ( T , U + X M  for tm/L <a. 

For the three-dimensional systems, the critical temperature and the exponents U. are 
computed on the specific heat by imposing the scaling relation 01 = 2 - du. Then, the 
other critical exponents are computed, with fixed T, and U. 

Three-dimensional systems 

The series of Stiefel model Vn,z offers a good opportunity to test the renormalization 
group results. We studied numerically in three dimensions, the five models Vz,2 = 0 ( 2 ) ,  
V3,2= S0(3), V3,3, V4,2 and V5,2. These values of n q d  p are precisely in the domain 
where the 4- E expansion failed. According to the standard line of arguments, these 
models are expected to have a first-order~phase transition. Another reason is bound 
to the defects of the models classified by the following homotopy groups 

n1(V3,Z)=Z2 nd V4,2) = 0 n i ( V s d = O  
nz( K , Z )  = 0 ~ n2I V4.d = n,( V5.J = 0 (20) 

n3( v3.2) z IT,( v4,2) = 2 x z ~ , ( V , , ) = z ? .  
This means that in three dimensions, the model V3, possesses line defects and configur- 
ation defects (instantons), V,,, point defects, and Vs,z configuration defects (instantons). 
Because of the general relation II j (  V,,p) = 0 for j < n -p, the first three homotopy 
groups for the manifold V,,z are trivial for n 6. 
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, The simulations for the V , ,  and V,,  models show a clear second-order phase 
transition with exponents given in table 1. The scaling is fulfilled up to a very good 
accuracy. Obviously, for these two models, a 6rst-order transition is to be excluded. 

We made extensive numerical simulations for the SO(3) model, and obtained clear 
evidence for a continuous phase transition. The specific heat is shown in figure 1. The 
critical exponents are very close to those of a tricritical point. Even using tinite size 
scaling, it is difficult to exclude the mean field values, v = $  and y = l ,  with some 
logarithmic corrections [7]. These exponents clearly differ from those of the four 
component Heisenberg model, predicted by the 2+ E expansion; ( p  =0.25 compared 
to p = 0.39, for example). In figure 2, the density of defects D and the topological 
order parameter p are drawn. We see clearly the usual signatures of a phase transition, 
with the increase in the number of defects through the critical region, and with p 
which is a topological order parameter, even for a three-dimensional system. The 
discomforting feature for this model is its poor FSS accuracy. In particular, the 
susceptibility can only be accommodated with a negative 7 exponent, if we assume 
valid the scaling relation y =  42-7). This is a nonsense, which may indicate some 
strong finite size corrections. 

Table 1. Critical exponents for d = 3  

Model T, Y a Y '7 B io 

SO(3) = V,,> 1.532 0.515(10) 0.46(3) 1.1 (1) -0.10 (5) 

Kawamura n = 2 1.45 0.53 (3) 0.40(10) 1.10 (IO) -0.1 0.8 (1) 

V4.2 1.12 0.57 039. 1.1 0.05 
v5.2 0.88 0.59 033 1.1 0.14 

Kawamura n = 3 0.95 0.55 (3) , 0.34(10) ' 1.10 (lo) 0.0 

O(2) = v2.2 2.445 0.41 0.77 0.95(5) -0.3 0.35 
O(3) = v, s 1.6825 0.37 0.9 0.9 -0.4 

C" 

,. ,.. 30 , I : '  

20 

10 

0 
1.3 1.4 1.5 1.6 1.7 1.8 

T 

Figure 1. The specific heat C, for the SO(3) model at three dimensions d=3 ,  size 
L=4,8,16,32. The dashed curve is the usual power law singularity with T,=1.5315, 
vs0.515and a = Z - d v .  
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0.2 -71 
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1.3 1.4 - 1.5 ' 1.6 1.7 1.8 
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Figure 2. The density of defects D and the topological order parameter p for the SO(3) 
model at three dimensions. 

The V,,y O(2) and V3> = O(3) models appear to be very different. The numerical 
simulations are much more difficult because there are more vectors, because the bias, 
as proposed in [lo],  does not help to reduce the autocorrelation time in the low 
temperature phase, and because the autocorrelation time grows very badly at transition. 
For the O(2) model, the specific heat shows a very strong singularity and the FSS, as 
explained above, gives u=O.4, a value close to $ which should signal a first-order 
transition; but it is not possible to fit correctly the data with an exponent U=$. The 
FSS applied to the susceptibility gives y =  1, and using the above scaling relation, we 
obtain the strongly negative value 7 = -0.3. However, the probability distribution of 
energy at the transition has a double bump shape, advocating a first-order transition. 
For the O(3)  mode1,the first-order character of the transition is even more pronounced. 
Proceeding with the FSS as for the O(2)  model, we obtain U = 0.37 and 7 = -0.4. In 
both cases, the transition occurs with the Z, symmetry breaking. It seems that, generi- 
cally, the O( n) models in three dimensions will have first-order transition. This indicates 
that the absence of fixed point in the 4- E expansion for some Stiefel model is related 
to a true singularity for p = n. 

It is interesting to compare the present study to the Monte Carlo computations of 
Kawamura [ Z ] ,  who studied the frustrated Heisenberg model on a stacked triangular 
lattice, and to the computation of Diep[l4], who studied a helical magnet. As discussed 
in the introduction, it can be argued that these systems should belong to the same 
universality class, with the -same critical exponents. At least. for the frustrated X- Y 
 antiferromagnet,^ corresponding in principle to our O(2) model, the discrepancy for U 
and for the specific heat exponent is rather clear. We must notice that, from the 
Kawamura results, we would also deduce a negative value for q. But if the 0(2) model 
has a first-order transition, we have no reason to expect universal behaviour. For the 
frustrated Heisenberg antiferromagnet, corresponding to the SO(3) model, the agree- 
ment is only marginal. 

Because three dimensions can be reached by a 2C E expansion, it is also interesting 
to compare the models W3, S', SO(3) and O(3) for ,d ='3. The RP" model has a 
first-order phase transition for all n 2 2 .  In contrast, the S" model possesses the usual 
well known second-order phase transition, the SO(3) model has a second-order phase 
transitipn, but with different critical exponents than S3, and~the O(3) model has a 
first-order transition. 
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Two-dimensional systems 

As argued above, an interesting group of models on which we can test the renormaliz- 
ation group in two dimensions is S’, RP3, SO(3) and O(3). These manifolds all have 
the same local structure and differ only by global quantities (except for SO(3) = RP’ 
where the action differs). We made large Monte Carlo simulations for the RP3 and 
SO(3) models. For these two models, although fitting curves is a difficult art, a 
singularity of the form predicted by the RG in two dimensions &.,=cexp(a/T), 
xm= c‘exp(a‘/T) clearly has to be excluded. We then try the usual power law form 
&,bo= cltl-”, and a Kosterlitz-Thouless form fa= c exp(a&), xm= e’exp(a’fi), with 
t = (T- T,)/ T,. As already known for the X- Y model, it is di5cult to decide between 
these two forms. A power law fits well, but a  l like divergence fits even better. Without 
any analytic hint, we would favour this second form. As an example, for the SO(3) 
model the finite size scaling for the susceptibility is reported in figure 3 for a KT 
like divergence, in scales suited to test the conditions 18 and 19. Without rescaling, 
on the raw plot x versus T, the power law and KT fit are barely distinguishable from 
the measurements. As for the RPZ model [13], the transition is clearly associated 
to the defects for both RP’ and SO(3). The density of defects D grows across the 
critical domain and p is a topological order parameter. Nevertheless, the defects 
susceptibilities are very different for these two models in the low temperature phase. 
This indicates that they are not identical. 

H Kunz and G Zumbach 

%I . 
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3.0 

2.0 

1.0 

0.0 
0.0 5.0 10.0 15.0 

Lie, 

Figure 3. The FSS plot with a KT singularity for the susceptibility x in the SO(3l model 
at two dimensions at size L= 8, 32, 64, 128, 256. The parameters are 1; = 0.683, a = 1.43, 
ylv-1.7, c(f)=O.32, c(x)=0.77. 

The O(3)  model still has another critical behaviour. As discussed above, the Monte 
Carlo simulations are much more difficult. Again, a singularity as given by the RG in 
two dimensions has to be excluded and we would favour a KT like divergence, m i  
being a topological order parameter for the transition. 

In order to conclude on these two-dimensional numerical simulations of RP’, 
SO(3) and O(3) compared to S3, we clearly obtain four different critical behaviours. 
The first three systems seem to have a KTlike a Singularity and only S3 has a singularity 
as predicted by the RG in two dimensions [15]. 
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